EYFS / KSI Maths Calculation Guide for

Parents

The 3 Ways Children are taught Maths

Concrete Representation

Children use real objects to explore Mathematical concepts

Pictorial Representation

Children have sufficiently understood the 'hands on' experiences and can now relate them, for example through diagrams or pictures of the problem.

Abstract representation

Children are now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

Overview	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on using cubes. Regrouping to make 10 using ten frame.	Adding three single digits Use of base 10 to combine two numbers.	Column method regrouping. Using place value counters. (up to 3 digits).	Column method regrouping. (up to 4 digits)	Column method regrouping. Use of place value counters for adding decimals.	Column method regrouping. Abstract methods. Place value counters to be used for adding decimals.
	Taking away ones Counting back Find the difference Part whole model. Making 10 using the ten frame	Counting back Find the difference Part whole model. Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 3 digits)	Column method with regrouping. Abstract for whole numbers Start with place value counters for decimals with the same amount of decimal places.	Column method with regrouping. Abstract for whole numbers Place value counters for decimals - with the different amount of decimal places
$\begin{aligned} & \frac{\circ}{2} \\ & \frac{0}{0} \\ & \frac{10}{ㅇ} \\ & \frac{1}{5} \\ & \frac{1}{2} \end{aligned}$	Recognising and making equal groups. Doubling Counting in multiples. Use cubes. Numicon and other objects in the classroom.	Arrays-showing commutative multiplication	Arrays 2d x 1d using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but need a repeat of year 4 first (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi digit up to 4 digits by a 2 digit number)
$\begin{aligned} & \text { co } \\ & \frac{0}{n} \\ & \hline 0 \end{aligned}$	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping. Division within arrays linking to multiplication. Repeated subtraction.	Division with a remainder - using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters.	Division with a remainder. Short division (up to 3 digits by 1 digit - concrete and pictorial)	Short division (up to 4 digits by a 1 digits number including numbers)	Short division Bus stop method with place value counters (up to 4 d by a 2 d number) Children should exchange into the tenths and hundredth column too.

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	5 Use part part whole model. 10 \square Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$10=6+4=7$
Starting at the bigger number and counting on	start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ start with the bigger number and use the smaller number to make 10 . Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ (1) 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language '1 more than 5 is equal to 6 .' '2 more than 5 is 7 .' 's is 3 more than 5.'

Objective \＆ Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$								
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\square+1=16$ $16-1=\square$ $1+\square=16$ $16-\square=1$								
Using known facts		$\begin{aligned} \because+\because & =\therefore \\ \\|+\\| \\| & =\\| \\|\\| \\| \\ \square \square+\text { 日昌 } & =\text { 品品 } \end{aligned}$ Children draw representations of \mathbf{H}, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$								

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$
Add a 2 digit number and tens	$25 \div 10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	BY Fiff Moael using aienes, place vaiue counters and numicon	 Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 2_{2}^{25+47} \\ 20+\frac{1}{5}+40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} \frac{(4)+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts 'Seven is 3 more than four' 4 'I am 2 years older than my sister' Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.?

