Equivalent fractions (2)

Shade the bar models to represent the fractions.

b) Shade $\frac{2}{4}$ of the bar model.

c) Shade $\frac{3}{6}$ of the bar model.

- d) What do you notice?
- e) Write another fraction that is equivalent to $\frac{1}{2}$

2 Shade $\frac{2}{3}$ of each bar model.

b)

c)

d) Use your answers to parts a), b) and c) to complete the equivalent fractions.

$$\frac{2}{3} = \frac{\boxed{}}{6} = \frac{8}{\boxed{}} = \frac{\boxed{}}{15}$$

Mo is finding equivalent fractions.

Do you agree with Mo? _____

Explain your answer.

Find the missing numbers.

Here is a number line.

a) What fraction is each shape pointing to?

b) A circle is halfway between the triangle and the square.

Draw the circle on the number line.

Do you agree with Eva? _____

Show how you worked this out.

Compare answers with a partner.

